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On the application of the Born approximation to the 
Aharonov-Bohm and related problems 
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School of Mathematics and Physics, Macquarie University, North Ryde, NSW 2113, 
Australia 

Received 25 June 1984, in final form 6 March 1985 

Abstract. The exact solution to the problem of scattering of electrons by a solenoid of 
infinite length is studied in two limiting cases: firstly, when the radius ro+O with the 
enclosed flux I$ held constant, and secondly, when 4 + 0 with r, held constant. Previously 
reported discrepancies between the Bom approximation and the Aharonov-Bohm solution 
of this problem are reconciled and conditions for the validity of each of these two 
approximations are established. The relevance of the results to a related scattering problem 
involving crystal dislocations is briefly discussed and in this case the Born approximation 
is shown to be valid over almost all the Fermi surface. 

1. Introduction 

The scattering of electrons by the magnetic (vector-potential) field of an infinitely long 
solenoid, whose circular cross section of radius ro contains magnetic flux 4, was 
investigated by Aharonov and Bohm (1959; henceforth AB) in the limit ro+O with 4 
held constant. The parameter 4 is a measure of the scattering strength and, at least 
for small 4, one expects the Born series for the scattering amplitude to converge 
rapidly. Yet Corinaldesi and Rafeli (1978; henceforth CR) have observed, that, when 
applied to the Hamiltonian considered by AB, the (first) Born approximation yields a 
scattering amplitude which differs? from that found by the latter authors. Although 
CR showed that the difference between the Born and AB approaches was confined to 
their different treatments of the s-wave scattering, their investigation did not reveal 
the underlying cause of the paradox, nor did it establish which, if either, of the two 
solutions was an appropriate representation of the true scattering amplitude. 

It is the aim of the present paper to further investigate the cause of the above 
paradox and to ascertain the conditions under which either the Born or AB approximate 
solutions satisfactorily describe the true physical situation of electron scattering by a 
solenoidal magnetic field. The results contain a salutary reminder of the subtleties of 
limiting processes, especially those involving multiple limits-in this case the ‘AB limit’ 
( ro+ 0, 4 = constant) and the ‘Born limit’ ( 4  + 0, ro = constant), both of which are 
implied in the C R  application of the Born approximation to the AB Hamiltonian. 

t This discrepancy seems to have been first noticed by Feinberg (1963) and is also very briefly discussed by 
Ruijsenaars (1983). A similar discrepancy has been noted (Kawamura 1978a, Kawamura et al 1982) in 
connection with an analogous problem involving the interaction of conduction electrons with crystal 
dislocations. 
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Application of the Born approximation 2499 

where 

In[ r-'MK,@ (ar'/ rg)] = ( kro)-'[ - 1 + 2cyM:,+( z)/ MK+ ( z ) ] ~ = ~  (2.10) 
r=ro  

which depends on n through (2.6). The primes in (2.9) and (2.10) denote derivatives 
with respect to the arguments kro and z, respectively. 

The physical significance of the exact solution (2.9) can be enhanced by expressing 
it in terms of phaseshifts. This will also enable us to establish criteria for the adequacy 
of the approximate solutions to be discussed in 99 3 and 4. To establish reference 
phases we consider the solutions of (2.1) with A, = 0. Those solutions which are finite 
everywhere are 

J/;(r, e )  = eineJ,,( k r )  

i,b;-ei"e(2/nkr)1'2 cos[kr-(n+t)(n/2)]. (2.12) 

(2.11) 

with asymptotic form (Watson 1944, 0 7.21), as kr+ m(kr >> n )  

On defining 

COS A,, = a,,( a', + bi) -1 /2 ,  sin A,, = -b,,(a',+ b:)-1/2 (2.13) 

the asymptotic form of (2.3) can be written as 

+: -eine[2(a',+ b ~ ) / n k r ] ' ~ 2 ~ ~ ~ [ k r + A , ,  - ( (n+aI+f)n/2] .  (2.14) 

The phase shift is thus 

8, = A, + (n - ( n  + cy I)( n/2).  (2.15) 

3. The Aharanov-Bohm limit: kro+O 

The solution adopted by AB, in the limiting case where kro + 0 with CY fixed, was bn = 0 
for all n. Hence A,, = O  also and the AB phaseshifts are, from (2.15) 

s ~ B = ( n - / n + ~ l ) r r / 2 = ~ n c u / 2 ( m o d u l o  n). (3.1) 

Comparing (3 .1 )  with (2.15) we see that for the AB solution to closely approximate 
the exact solution requires 

lA,,/= (tan-*(b,/a,,)l<< .rr(al/2 (3.2) 

for all n. Throughout the remainder of this paper it will be convenient to supposet 
IcyI<< 1 and in this case (3.2) reduces to 

I b n /  an I << .rr I cy I /  2. (3.3) 

t Extension to the case a +integer f 0 is trivial 
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Kretzschmar’s (1965) analysis of (2.9) in the limit kro+ 0 rests on his observation 
that as kr,+O the square bracket on the right of (2.10) approaches a finite limit? so 
/A, ,  + 03 as ( kro)-’ .  Then the series (Watson 1944) 

00 

J,(x)= C ( -1 )m(x /2 )u+2m[m!r (~+  v + m ) ] - ’  
m=O 

(3.4) 

shows that J y ( x ) ~ x ”  as x+O so that both terms in the numerator of (2.9) behave as 
( kro)incal-l. Similarly, since (Watson 1944) 

Y,(x) =J , (x)  cot(rv)-J- , (x)  cosec(w) (3.5) 

we see that YV(x)ax- I”  as x +  0 so that both terms in the denominator of (2.9) behave 
as (kro) - ln+ul- ’  . Hence (2.9) is of order (kr0)21n-ea1 and so 

lim b, = 0 
k r p O  

for all integers n and a # integer. This justifies the AB solution (b ,  = 0) and the 
corresponding boundary condition 

6) = 0 (3.7) 

in the limit kr,+O, which may be regarded either as the long wavelength limit of the 
‘real’ problem having a fixed r,, or the mathematically convenient limit in which the 
radius of the solenoid is assumed to shrink indefinitely with the flux inside held constant. 

Although the argument of the previous paragraph is sufficient to justify the AB 

solution in the limit kro+ 0 it provides no quantitative estimate of just how small kr, 
must be for (3.3) to hold, i.e. for the AB solution to closely approximate the exact one. 
The following analysis provides such an estimate. It is convenient to assume henceforth 
that kr,<< 1. This restriction and the aforementioned IaI<< 1 serve to simplify the 
analysis and are appropriate when comparing the AB and Born solutions. 

Our analysis depends, as does Kretzchmar’s argument which was sketched above, 
on replacing Ylvl(kro) and its derivative in the denominator of (2.9) by their leading 
terms from (3 .9 ,  namely, 

where we also used (3.4). It is clear from (3.5) that the approximation (3.8) is only 
permissible provided$ 

I J - 1 Y I ( kro ) I >> I CO s ( r U ) J 1 Y 1 ( kr,) I (3.9) 

and this is certainly not satisfied when U = ( n  + a )  approaches an integral value, for 
then lJ-l,l/ = 15,l. This clearly casts doubts on the adoption of the AB solution when 
/CY/ is sufficiently small-this will be investigated further in Q 4. Continuing, we observe 

t For n # 0 this limit depends only on a and n and Kretzschmar’s argument is valid. For n = 0 the limit is 
( -k2r; /2)andleadstoA0+ -kr0/2 (see(3.15))so lAol+Oas kro+O. NeverthelessKretzschmar’sconclusions 
about bo+ 0 still apply. 
$ Because of the difficulty of imposing definite criteria as to what constitutes ‘acceptable’ accuracy we have 
used the imprecise comparison denoted by >>. One should think of this symbol as denoting that the terms 
on either side of it differ by a factor of at least, say 10. 
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that when kr,<< 1 the condition (3.9) becomes 

where the final equality is a consequence of equation (1.2.6) of Erdelyi er a1 (1953). 
For small la1 we.retain the leading term on the right of (3.10) to get the condition 

(3.11) 

This inequality is satisfied for all integers n # 0 if 

(kr0/2)21n'<< (ai<< 1 (3.12) 

and for n = 0 provided 

(kr,/2)21a1<< 1. (3.13) 

the latter being by far the more restrictive condition. Adopting it as a sufficient condition 
for the validity of (3.8), we get from (2.9) and (3.8) 

In + a1 - kr,A, 
In + a I + kr,A, ' 

_ -  sin(.rrln + a / )  (3.14) 

To further analyse (3.14) we need the kr, and a dependence of the A,. It is shown 
in the appendix that, to first order in the small quantities a and k2ri, 

k2r i  a n  kr,A, = In( - +- 
2(1+ln/)  l+lnl  

(3.15) 

and using this in (3.14) yields, to leading order in a and kr,, 

b , / a ,  = -(.rran/21nl)(kro/2)"n1[r(1 + n # O  (3.16) 

and 

bo/ao= - ~ l a l ( k r , / 2 ) ~ ' ~ ' .  (3.17) 

Hence to obtain the AB regime (3.3) it is sufficient that (3.13) applies. That condition 
(3.13) is necessary as well as sufficient for the applicability of the AB solution is readily 
seen from the expression 

-bola,= .rrlaI[1 +(kr,/2)-21a1]-', kr,, la[<< 1 (3.18) 

which follows from (2.9) for kro and (a[<< 1. We emphasise the severity of condition 
(3.13)' which restricts kr, to extremely small values if the AB solution is to apply. 

Finally we observe that (3.18) implies 

bo/ a, = - 4 T I  Q (( 1 - E )  (3.19) 

when E = la1 ln(2/kro) is small compared to unity. This Born limit ( a  -+ 0) will be 
studied in § 4 using a different approach which is more closely related to the usual 
Born expansion in powers of a. 
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4. The Born limit: (I + 0 

As is well known, the Born approximation rests on the assumption that the change 
A+, which is induced in the wavefunction by some perturbation, is small. In the present 
context this requirement becomes 

A + + O  as a+o. (4.1) 

This is incompatible with (the s-wave component of) the AB boundary condition (3.7) 
which requires a large change, at r = 0, in the incident wave of unit amplitude. It 
follows that the use of the AB limiting-case Hamiltonian in the familiar Born expression 
(e.g. Schiff 1968) for the (first-order) scattering amplitude is not justified. It is scarcely 
surprising that such a questionable procedure yields, as was pointed out by CR, results 
which disagree with the AB expression for the scattering amplitude. 

To study the applicability of the Born approximation to the present problem we 
return to the exact solution (2.9) and consider the behaviour of the coefficients b,(ro, a )  
as a -+ 0. Since the conflict between (4.1) and (3 .7)  is due entirely to the s-wave(n = 0) 
component of the wavefunction (see also the remarks following (4.21)) it is sufficient 
to concentrate our attention on bo. We observe also that the s-wave condition (3.13) 
is stronger than (3.12) in our earlier analysis. The importance of the s-wave contribution 
was previously emphasised by CR. 

Since J J x )  is an analytic function (Watson 1944) of v we can expand 

Jial(kro) = J o ( ~ ~ o )  + ~ ~ ~ ~ ~ J v ( k r o ) / ~ ~ l , = o + .  . . (4.2) 

and neglect higher-order terms provided la\ is sufficiently small. To see what 
‘sufficiently small’ means we differentiate (3.4) m times (cf Watson 1944, p 61) to get, 
for Jx/<< 1 ,  

[amJ”(x)/av”]”=o= log- +o log- ( ; ) m  [( ;)“‘]. (4.3) 

Hence, the expansion (4.2) converges rapidly provided 

/a1 ln(2/kro)<< 1 kro, laI<< 1 .  (4.4) 

Conversely, if this is not the case the convergence is not rapid and higher-order terms 
in la/ must be retained. Condition (4.4) is thus seen to be both necessary and sufficient 
for the validity of the first Born approximation and, with kro and la I << 1 it is almost 
always satisfied. 

We henceforth assume that (4.4) holds and use the expansion (4.2), and the similar 
ones for Y,  J’ and Y r ,  in (2.9) to find 

(4.5) 
-- bo - -  [(AoJo-Jb)/(AoYo- yb) l+(n la l /2)+O(a2)  
a0 1 - [(+ l/2)(AoJo - Jb)/(Ao yo - Y6)I-t 0(a2) 

where the argument of all Bessel functions and their derivatives is kr,. We used 
(Abramowitz and Stegun 1970, equation 9.1.68) 

[aJ,(x)/avI,=o = &TYO(X), [aY,(x)/dv],=O = -f.rrJo(x) (4.6) 

and the similar relations for J’ and Y’. Since (see appendix) 

( AoJo - J b ) /  (A0 Yo- Yb) = O( a’) (4.7) 
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(4.5) yields (cf (3.19)) 

(bola,) = -(.rrlQ1/2)+O(Q2), kr,, lal<< 1 (4.8) 

in the domain of kro and Q within which (4.4) is satisfied. Note that (4.8) differs from 
the AB solution, which is valid if and only if lbn/anl<< vIa1/2. On using (4.8) in (2.13) 
we find Po = ~ l a 1 / 2  so that the s-wave phaseshift (2.15) exhibits an analytic Q depen- 
dence in the Born regime (4.4). 

We now consider the application of the Born approximation to the Hamiltonian 
which corresponds to (2.1). This will have the dual purpose of allowing some discussion 
of the work of CR and of demonstrating that our small-a expansion which led to (4.8) 
is indeed equivalent to the Born approximation. The Hamiltonian corresponding to 
(2.1) is 

H = -(h2V2/2m)+AH (4.9) 

where 

-r-'[(2ia a l a e )  - 0'1, r a  r,, 
h2 -ri2[(2ia a/ae)-(a2r2/r;)], r s  ro. 
-AH= (4.10) 

For comparison with the AB solution and that of CR we assume an incident 
wavefunction corresponding to a particle flux along the direction 8 = T. Then imposing 
the asymptotic condition (Aharanov and Bohm 1959) 

kr+oo, (4.11) 

on the solutions of (2.1) leads in the usual way (e.g. Messiah 1961, § 19.5; the Green 
functions for the two-dimensional case are given by Economou 1979, § 1.2, and Morse 
and Feshbach 1953 § 7.2) to the exact expression 

J/ - exp( -ikr cos 8 - i d )  + r-'/'f ( e )  exp(ikr), 

ein/4 

f(e') = -h2(2Tk)1/2 [:m dB JOm r d r  exp[-ikr cos(@- O']AH$(r, e) (4.12) 

for the scattering amplitude. 
The Born approximation uses the plane wave exp[ikr cos( 0 - T)] in the integrand 

of (4.12) in place of the exact solution of (2.1). On doing this, taking AH from (4.10) 
and using (McLachlan 1946, p 159) 

d e  exp(-ine -iz cos e )  = 2~ exp(-in~/2)J,(z) (4.13) 

we readily find 

fe,,( e )  = ia~[exp( i~ /4) ] (2~k)- ' /2[1 ,  tan( 6/21 - iaZo] (4.14) 

where 

Io = x i4  1; x3J0(x) dx+  x-'Jo(x) dx, I,: 
W 

I, = x i 2  iXo x2Jl(x) d x +  [ J,(x) dx, 

(4.15) 

and 
J o  J xo 

xo = 2kr0 cos( 8 / 2 ) .  (4.16) 
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If we assume, as before, that kro<< 1 then (4.15) become 

Io= lx: x-’Jo(x) dx+f+O(x i ) ,  

II = loa J l (x)  dx-ixi+O(x:). 

(4.17) 

The integral in the second of (4.17) is unity and that in the first diverges logarithmically 
as xo+ 0, so for sufficiently small kr, (4.14) yields 

fBo,(6) = i a ( ~ / 2 k ) ” ~ [ e x p ( i ~ / 4 ) ] { t a n ( 8 / 2 ) + O [ a  ln(2kro cos +e) ] } .  (4.18) 

The term in (4.18) which is linear in a agrees with the calculation of CR. These 
authors do not consider the term quadratic in a, which diverges in the AB limit, kr, + 0. 
They point out that the linear term in (4.18) differs from the corresponding (small Ial) 
scattering amplitude of AB by the omission of the s-wave contribution to the latter-as 
we expect from the discussion following (4.8). It is interesting to note that provided 
6 is not too close to zero (back scattering) the linear term in (4.18) dominates when 
(4.4) applies, so that in this regime both the small la1 expansion of (4.2), and also that 
of the total scattering amplitude, are justified. We further note that in this regime the 
linear term continues to dominate the scattering amplitude in the forward scattering 
region (8  = T )  where in+ CO. This latter divergence is a result of the ‘long range’ r-’ 
dependence of the vector potential and is not an artefact of either the AB or Born 
approximations. 

Finally, we calculate the phase shift directly using the first Born approximation 

where AH,, = A H , , ( r )  = exp(-in6)AH exp(in6). This leads to 

from which we obtain, with lal, kr,<< 1,  
,Born ,,+, = -$.lran/)nl+O(a2, akr,, k’ri) 

and 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

We observe that (4.22) is consistent with (4.8) and (2 .15) .  The phaseshifts (4.21) agree 
with the AB result which is, obtained by setting A, = O  in (2.15), verifying the CR 

observation that the AB and Born scattering amplitudes differ only in their s-wave 
components. 

5. Summary and discussion 

We have considered the behaviour of the exact solution (2.9) of the problem of 
scattering of a beam of electrons by a magnetic solenoid of non-zero radius r,. Two 
distinct domains of the wavevector k and flux parameter a were identified, within 
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which approximate solutions based either on the Born approximation or on the kro+ 0 
solution due to Aharonov and Bohm (1959), are respectively valid. These are, from 
(3.13) and (4.4) respectively, 

0 < ( kr0/2)21a' << 1 AB regime (5.1) 

and 

0 < la I ln(2/ kr,) << 1 Born regime (5 .2 )  

where it was assumed kr,, /aI<< 1. Noting that x2y  = 0.1 implies y ln( l /x)  = 1.15 we 
see that (5.1) is more or less equivalent to 

la[ ln(2/kr0)> 1 AB regime (5.3) 
and the mutually exclusive nature of the two regimes is apparent. To satisfy the AB 
condition (5.1) or (5.3) requires extremely small values of kr, and this regime accounts 
for only a small fraction of Q - kr, space. Conversely the Born regime applies almost 
everywhere (in I Q ~ ,  kr,<< 1). As a result of their having no common domain of validity 
the AB and Born approximations are seen to be incompatible. The paradoxical result 
of CR comes about due to the (physically meaningless) superposition of two mutually 
exclusive approximations. 

Discrepancies between the AB and Born solutions of an analogous problem in 
dislocation theory have been reported by Kawamura (1978a) and Kawamura et ql 
(1982). These also can be resolved along the above lines. In the simplest (tight-binding) 
approximation (Kawamura 1978b) the parameter a is given by 

Q = bk3/2.rr (5.4) 

where b is the Burgers vector and k3 is the projection of the wavevector k of a 
conduction electron parallel to the straight (screw) dislocation. With ro now standing 
for the core radius of the dislocation and k for k,, the projection of k perpendicular 
to the dislocation, the results (5.1) and (5.2) show that the degree of validity of either 
the Born or AB scattering amplitudes depends on the position of k on the Fermi surface. 
Except for regions very close to the poles, (5.2) and the Born solution will apply. The 
logarithmic dependence on k,, as opposed to the linear dependence on Ik31, ensures 
that the AB regime is relatively small. For example, taking r,= ( b / r ) ,  and a Fermi 
radius typical of copper, indicates that 21al 1n(2/rok,) > 1 only over small polar caps 
which account for less than 1% of the Fermi surface area. We may infer that the Born 
approximation may therefore be used over almost all the Fermi surface for dislocation 
scattering problems, the exceptions being for waves incident almost parallel to the 
dislocations. 

The thrust of the present paper has been confined to resolving the paradox pointed 
out by CR. Its contribution to the long and continuing debate on the interpretation of 
the AB effect (see Erlichson 1970, for a discussion of the earlier debate; Ruijsenaars 
(1983) provides an extensive bibliography which covers the recent resurgence of interest 
in this problem) is limited to the following points. Firstly, by resolving the above- 
mentioned paradox removes some of the aura of mystery surrounding the effect and 
its interpretation. In particular, by emphasising the pre-emininence of the relatively 
familiar Born solution we hope to have made more palatable the interpretation of the 
AB effect as a normal (quantum) scattering process. Secondly, for those who find the 
interpretation of the AB effect as a scattering process unpalatable, it may help to 
consider the dislocation analogies referred to above. In these examples, which are 
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mathematically identical to the AB magnetic solenoid problem, the 'reality' of the 
scattering, now due to the elastic strain field, seems easier to accept. Finally, by 
showing how one can be misled by a naive application of mathematical techniques to 
the pseudo-physics encapsulated in the limiting-case differential equation, we question 
the conclusions of those authors (notably Purcell and Henneberger 1978, Henneberger 
1980, 1981, 1984, Henneberger and Huguenin 1981) who base their arguments on a 
study of the singular case considered by AB. 

As in the treatments of AB and CR we have concentrated on the case where no 
electrostatic potential field is applied. However, the most controversial aspect of this 
problem concerns the prediction of effects due to the magnetic flux even when the 
electrons are completely excluded from the flux-containing region by a large potential 
barrier. It is therefore appropriate to conclude by considering the case (Kretzschmar 
1965) where the core potential 

V( r) = V = constant, r S  ro 

= 0, r >  ro 
( 5 . 5 )  

is supersposed on the magnetic potential (2.2). This changes the parameter K of (2.6) 
to K ,  = [rik2( 1 - u) /4a]  - n/2 ,  where U = 2mV/h2k2. If we retain la(, rok<< 1 and restrict 
U so that Irik2(l -U)\<< 1 the expression (3.15) is regained for An except that on its 
right-hand side k2 is replaced by k2( 1 - U). As before the n = 0 term proves to be the 
most crucial and one finds in place of (3.18) 

Thus (3.13) again ensures ~bo/ao~<< rial and the solution in this AB regime is different 
from that in the Born regime (4.4). Further, according to (5.6), provided U > 0 (repul- 
sion) there is another region?, centred on kr, = ( 2 1 a l / ~ ) ' / ~  and of similar width, within 
which Ibo/aol<< ~ l a l .  The AB solution is therefore applicable in this (relatively broad) 
region but it turns out to be identical to that given by the first Born approximation 
which is readily shown to yield 

CIT 
= -,[tuk2ri+O(a2)] x [ 1 + 0 (  k2ri)] (5.7) 

L 

which agrees with (3.1) when kr,= ( 2 l a I / ~ ) ' ' ~  and / a [ ,  kr,<< 1.  We therefore once again 
find that the Born solution is adequate outside the very small region (3.13). 

Finally, the case V + KI is interesting as it models the experimentally important 
and controversial case of an impenetrable solenoid or whisker. For k2ri( o - 1 )  >> 1 we 
use Abramowitz and Stegun (1970, equation (13.5.14)) and, when a > 0, Kummer's 
transformation (Abramowitz and Stegun 1970, equation (13.1.27)) to find An - U'/* 
which yields in (2.9) 

In the hard-cylinder limit U + CO this agrees with Kretzchmar's (1965) equation (41). 
As in 0 3 one readily shows from (5.8) that when kr,, la1 << 1 

-bo/ a. = a I( kro/ 2)21"1[ 1 + O( 1 / kr,u 'I2)]. (5.9) 
t The restriction k r 0 e  1 implies U >> la1 so this region cannot be followed down to U = 0. 
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For this to agree with the AB solution the condition ( 5 . 1 )  must hold, the same condition 
which was found for U = O! Thus the AB solution is again shown to have a very restricted 
domain of applicability?. This result may seem surprising for it is tempting to argue 
(correctly) that with V +  CO we have (1, + 0 inside r = r, and therefore the AB boundary 
condition +(O) = 0 holds, independent of a and kr,. However, one cannot conclude 
from this that the phaseshifts take the AB values ( 3 . 1 ) .  On the contrary, the phaseshifts 
are determined by the conditions of continuity at  the boundary ( r  = r,), which lead to 
( 2 . 9 ) .  In general, the single condition (1,(0)=0, although true, no more serves to 
determine the phaseshifts than it does in the familiar hard-cylinder acoustic scattering 
problem where the phaseshifts certainly depend on kr,. The exception is when kr, + 0, 
which is expressed by ( 5 . 1 ) .  

Appendix 

The dependence of the coefficient A,  of (2 .10)  upon kr, and a is required for the 
analysis of the expression ( 2 . 9 ) .  Using ( 2 . 7 )  we first rewrite (2 .10)  as 

where O is given by ( 2 . 8 )  with c = ( 1  + Inl) and 2 a  = [1+ n + (nl - ( r i k 2 / 2 a ) ] .  On using 
this value of a in the series ( 2 . 8 ) ,  setting z = a and collecting terms of the same order 
in a we find, if la[<< 1 and y = ( r o k / 2 ) < <  1 ,  

where 2 p  = ( 1  + n + Inl). Term by term differentiation of ( 2 . 8 )  leads in a similar way to 

and use of (A3) and (A2) in ( A l )  then leads directly to (3 .15) .  
Although (3 .15)  would suffice to analyse ( b o l a , )  in the Born limit it is preferable 

to prove ( 4 . 7 ) ,  which does not require k r , c  1 .  The proof proceeds as above, but with 
c = 1 the power series in y which were terminated at order y 2  in (A2) and ( A 3 )  are 
readily summed to all orders in terms of Bessel functions. Then ( A l )  yields 

A. = [ J X k r o ) / J o ( k r o )  +O(a2)1, ('44) 

which is equivalent to ( 4 . 7 ) .  
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t Of course the (first) Born approximation has no validity at all for this very large perturbation. 
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